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Evaluation of chassis control method through
optimisation-based controllability region computation
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Tokyo 101-8308, Japan

(Received 3 November 2011; final version received 7 January 2012 )

This paper proposes a new systematic evaluation approach for vehicle maneuverability based on
controllability region computations. In this approach, the controllability region, defined as the set of
vehicle initial states that can be transferred to a stable equilibrium point in the state space by using
allowable controls, is calculated. The size of the controllability region for an open-loop system can
serve as a measure of the intrinsic performance of the control method, because if the vehicle state is
displaced outside of the controllability region, no controller will be able to maintain vehicle stability.
The problem of determining the controllability region boundary is formulated as an optimisation
problem such that the controls maximising the norm of the initial state can be determined. Thereby,
the performances of four-wheel steering control and direct yaw moment control are evaluated and
compared by the proposed procedure.

Keywords: chassis control; controllability region; optimisation; evaluation

1. Introduction

Chassis control systems must be designed to ensure that intended functions are preformed
under all foreseeable operating conditions. Critical to safety, these control systems require
extensive validation prior to market entry. However, owing to the increased use of advanced
control algorithms, validation of chassis control systems is becoming progressively more
difficult. Car manufacturers are thus faced with this challenging task of validation, which is
a lengthy and expensive process for highly complex chassis control systems. The validation
process is an integrated procedure involving analytical and experimental methods. Before a
vehicle is experimentally tested at the proving ground, the chassis control systems have to
be analytically shown to be safe and reliable, and to have the desired performance under all
possible operational conditions. Moreover, the analytical results assist in defining experimental
evaluations that are to be performed in proving ground tests.
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Analytical validation methods include robustness analysis [1], worst-case analysis [2,3],
bifurcation analysis [4], and controllability analysis. Among these analytical methods,
controllability analysis rooted in the computation of the controllability region is central to
the problem of establishing that a system is safe. The controllability region is defined as the
set of initial conditions that can be controlled to an equilibrium point by means of admissible
controls. The size of the controllability region for an open-loop system can serve as a measure
of the intrinsic performance of the control method, because if external disturbances move the
system out of the controllability region, no controller will be able to maintain system stability.
In this paper, a control method denotes the input channels used to control the vehicle motion,
regardless of which control algorithm is used to generate the control inputs. For example, four-
wheel steering (4WS) control uses front and rear steer angles as control inputs, whereas direct
yaw moment control (DYC) uses front steer angle and torques applied to each wheel as control
inputs. Closed-loop chassis control algorithms are designed by using given input channels to
satisfy control objectives, such as improvement in stability, model following, and robustness.
Existing research has not distinguished between open-loop control methods and closed-loop
control algorithms, as a result, identification of the factors that limit the performance of each
control system is not possible.

Although a number of studies on controllability analysis have been reported in flight
dynamics and control [5–7], articles on the application of controllability analysis to chas-
sis control systems do not appear to have been published to date. Therefore, this paper shows
the results of a controllability region analysis of chassis control methods based on an optimi-
sation approach. This approach allows us to clarify the performance limitations of a control
method, independent of the control algorithm used. This work makes the following con-
tributions. First, a method is proposed to compute the controllability region based on the
optimisation approach. Second, a comparison is given between the performance limits of cer-
tain control methods by determining the size of the controllability region. Finally, the proposed
approach is shown to be a viable analytical method in the validation process of chassis control
systems.

The remainder of this paper is organised as follows. In Section 2, controllability fundamen-
tals and computation of the controllability region are briefly described. Sections 3 and 4 outline
the vehicle model and the control methods considered in this study, respectively. Results of con-
trollability region computations and comparisons between the methods are given in Section 5.
Finally, concluding remarks appear in Section 6.

2. Controllability region

2.1. Definition of controllability region

Consider the general nonlinear system

ẋ = f (x, u, t), t0 ≥ t ≥ τ , x(t0) = x0, (1)

where x ∈ R
n is the state vector and u ∈ R

m is the control vector. The function f (x, u, t) is
assumed to be continuously differentiable in x, u, t for all t ≥ t0 and all x ∈ R

n, u ∈ R
m. For

a specified target set, X , and control constraint

umin ≤ u(t) ≤ umax, (2)

where the inequalities are treated component-wise, the controllable set C(τ , t0, x0) ∈ R
n to

the target set X at time τ > t0 is defined as the set of all initial states that can be transferred
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to the target by using a subset of the admissible controls [8]. For a linear time-invariant
system without input constraints, the controllable set is the entire state space if the system is
controllable. However, in general, a nonlinear system has a restricted controllable set around
the target. From a graphical viewpoint, the controllable set is referred to as the controllability
region. The controllability region is a useful design tool for comparing the effectiveness of
different control methods.

2.2. Computation of controllability region

Determination of the controllability region for a linear system under input saturation has been
widely studied and a number of computational techniques have been proposed [9–11]. How-
ever, computation of the exact controllability region for a nonlinear continuous time system is
in general a highly nontrivial task, especially for multidimensional systems. The controllability
region boundary of low-dimensional nonlinear systems may be found by directly applying the
controllability minimum principle [12]. However, use of the controllability minimum princi-
ple in determining the controllability region is limited to problems of three dimensions or less.
Therefore, one approach to establish the multidimensional controllability region is to consider
the projected controllability region, that is, projection of a high-dimensional controllability
region onto a region with lower dimension [13].

In this paper, we assume that the multidimensional controllability region can be analysed by a
number of two-dimensional cross sections. Different combinations of these cross sections then
help to visualise the multidimensional region. This analogue problem significantly simplifies
the computation of the controllability region. Note that comparisons of the cross sections give
us necessary, but not sufficient, conditions for evaluation of the control method: proximity
of specific cross sections in different control methods does not guarantee the closeness of
cross sections in all orientations. Nevertheless, this cross-section method provides useful
information on the controllability region.

Computation of the two-dimensional cross sections of the controllability region can be
achieved by a grid point method, where a fine grid is defined on a cross section and each grid
point is assumed to be an initial condition of the state equation. Next, a two-point boundary
value problem, in which numerical integration begins at each grid points and ends at X ,
is solved. Grid points are thus classified according to the results of integration: if control
inputs exist that take the trajectory from a grid point to X , then the grid point is controllable,
otherwise the point is uncontrollable. This approach is simple, but time consuming. Therefore,
in this paper, we propose an optimisation-based method combined with the ray-gridding
technique [14] for computing the controllability region.

2.3. Optimisation-based controllability region computation

The problem of finding the controllability region boundary, ∂C, can be formulated as an optimal
control problem that maximise the norm of the initial condition x0 on the cross section with
terminal constraint x(τ ) ∈ X . Instead of standard gridding, the ray-gridding technique operates
in terms of rays. Let us consider a set of rays rk , k = 1, 2, . . . radiating in different directions
from the centre of the xi–xj cross section, as shown in Figure 1. Here, the angle defining the
direction of the kth ray is denoted as θk . By assuming that the controllability region is convex,
the point of intersection between ∂C and rk is the solution of the following optimal control
problem.
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Figure 1. Ray-gridding method.

Find control vector u(t), t ∈ [t0, τ ] that maximises

J = � = ‖x0‖ (3)

subject to

xi(0) = � cos θk , xj(0) = � sin θk , (4)

xi(τ ) = 0, xj(τ ) = 0, (5)

and the additional terminal constraint

ψ{x(τ )} = 0, (6)

where X is assumed to be the origin of the xi–xj cross section.
Solution of this optimal control problem can be obtained using a modified version of the

minimum principle that properly accounts for both the control and state constraints. However,
because of the computational demand in the application of the minimum principle, here the
simple transcription method [15] is employed that is based on discrete approximation of the
control input. In the transcription method, the optimal control problem is transformed into a
parameter optimisation problem and is solved by an existing nonlinear programming code.
The primary advantage of this method is that it can easily handle general problems that involve
constraints such as those in Equations (2), (5), and (6).

The control input, u(t), is parameterised by dividing the time interval of the optimal control
problem, [t0, τ ], into N subintervals:

t0 < t1 < · · · < tN−1 < tN = τ . (7)

Typically, these subintervals are of equal size. Thus, the continuous function of time u(t) is
replaced with its discrete values, um, at tm, m = 0, 1, . . . , N . The unknowns of the parameter
optimisation problem are then the norm of the initial state, �, and the discretised controls, um.
We now suppose that � and um are given and placed in an unknown parameter vector X,

X = [� uT
0 uT

1 · · · uT
N ], (8)
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which contains 1 + m(N + 1) elements. With X generated, the state equation, Equation (1),
can be integrated numerically from t = t0 to τ to obtain the states at tm, m = 0, 1, . . . , N .
During this integration, the controls are assumed to change linearly between time intervals.
As a result of integration, the states at tm, denoted xm, become functions of only the parameter
vector X:

xm = xm(X). (9)

Similarly, the equality constraints in Equations (5) and (6) and the inequality constraints in
Equation (2) become functions of X. Moreover, the performance function in Equation (3) can
be rewritten as

J = J(X). (10)

Hence, the optimal control problem can be reduced to the following parameter optimisation
problem.

Find X that maximises

J = J(X) (11)

subject to

x′(0) = x′
0(X), (12)

x′(tN ) = 0, (13)

ψ{x(X)} = 0, (14)

where x′ = [xi xj]T. This parameter optimisation problem can be solved by mathematical pro-
gramming techniques, such as sequential quadratic programming. To increase the possibility
that the global optimum is found, rather than being trapped at a local maximum, a multistart
technique [16] is utilised, in which a number of initial input profiles are supplied to the search
algorithm.

3. Vehicle modelling

3.1. Vehicle model

The vehicle model used in this paper involves longitudinal, lateral, directional, and sprung-
mass roll degrees-of-freedom, and includes a spin mode for each wheel [17]. From Figure 2,
the equations of motion describing the basic degrees-of-freedom are derived as

Longitudinal motion: m(u̇ − rv) = Fx; (15)

Lateral motion: m(v̇ + ur) + mshsṗ = Fy; (16)

Yaw motion: Izzṙ − Ixzṗ = N ; (17)

Roll motion: Iφ ṗ − Ixzṙ + mshs(v̇ + ur) = Ls. (18)

Here, hs is the distance between the centre of the sprung mass and the roll axis, Iφ is the
moment of inertia about roll axis, and ms is the sprung mass. External forces Fx and Fy along
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Figure 2. Schematic of vehicle model.

the x and y axes of the vehicle and moment N are assumed to result exclusively from the
friction force between the tyres and road:

Fx =
4∑

i=1

Fxi, (19)

Fy =
4∑

i=1

Fyi, (20)

N = lwf

2
(−Fx1 + Fx2) + lf (Fy1 + Fy2) + lwr

2
(−Fx3 + Fx4) − lr(Fy3 + Fy4). (21)

Since tyre forces, FT , are defined in the wheel axis coordinate system, FT must be rewritten
in terms of vehicle axis coordinates:

Fx(1,2) = FTx(1,2) cos δf − FTy(1,2) sin δf , (22)

Fy(1,2) = FTx(1,2) sin δf + FTy(1,2) cos δf , (23)

Fx(3,4) = FTx(3,4) cos δr − FTy(3,4) sin δr , (24)

Fy(3,4) = FTx(3,4) sin δr + FTy(3,4) cos δr . (25)

Rolling moments are provided by the springs and shock absorbers:

Ls = (msghs + Gφ)φ + Cφp, (26)

where Gφ is the roll stiffness and Cφ is the roll damping.
The tyre forces result from the tyre lateral slip angle, longitudinal slip ratio, camber angle,

and normal load. The sideslip angles of the tyres have components resulting from body veloc-
ities and wheel deflections due to steering input, roll steer, and compliance steer. The transfer
of normal load on each wheel from cornering, acceleration, and braking is a critical aspect
of vehicle dynamics and contribute to limiting a vehicle’s maneuvering ability. Here, normal
loads are assumed to be a function of the vehicle’s weight, mg, longitudinal acceleration, ax,
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lateral acceleration, ay, and front/rear axle roll stiffness distributions, G∗
f , G∗

r :

Fz1 = lr
2l

mg − maxhg

2l
− 1

lwf

{
G∗

f (may + msgφ)hs + lr
l

mayhf

}
, (27)

Fz2 = lr
2l

mg − maxhg

2l
+ 1

lwf

{
G∗

f (may + msgφ)hs + lr
l

mayhf

}
, (28)

Fz3 = lf
2l

mg + maxhg

2l
− 1

lwr

{
G∗

r (may + msgφ)hs + lf
l

mayhr

}
, (29)

Fz4 = lf
2l

mg + maxhg

2l
+ 1

lwr

{
G∗

r (may + msgφ)hs + lf
l

mayhr

}
, (30)

where hf and hr denote the heights of the front and rear roll centres, respectively.

3.2. Tyre model

The tyre model used in this study [18] requires tyre lateral slip angle, βi, longitudinal slip,
si, normal load, Fzi , and camber angle, γi as inputs, and generates lateral tyre force, FTyi , and
longitudinal tyre force, FTxi as outputs to the vehicle dynamics model:

FTyi = μ0i Fzi

⎛
⎜⎝ f (σi)Ksi tan βi√

K2
si

tan2 βi + K2
ci

s2
i

+ Yγiγi

⎞
⎟⎠ , (31)

FTxi = μ0i Fzi

f (σi)Kci si√
K2

si
tan2 βi + K2

ci
s2

i

, (32)

where f is the force saturation function, which is a function of composite slip σi. The com-
posite slip is in turn a function of βi, si, and load-dependent longitudinal and lateral stiffness
coefficients Kci and Ksi . Here, Yγ is the load-varying camber thrust coefficient.

Figure 3 shows the typical tyre force characteristics under a zero camber angle. Force
reduction is apparent at high slip angles and at high longitudinal slip ratio levels. The interaction
between the longitudinal and lateral forces is apparent in the figure. The tyre model response
characteristics illustrated in Figure 3 clearly includes the full operating range of the tyre motion.
A dynamic delay in the generation of the tyre’s side force is approximated by a first-order lag
system whose lag time constant is a function of the transition length and wheel speed.
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4. Control methods

Six control inputs are regarded as inputs to the vehicle model: front steering angle command,
uf ; rear steering angle command, ur ; and braking torque commands, T1–T4. The following
three control methods having different combination of these inputs are then considered in
order to compare the inherent performance of the control method.

(1) Conventional front wheel steering In this case, only the front steering angle is considered
as control input. Therefore, the control vector in Equation (1) is

u = [uf ], −ufmax ≤ uf ≤ ufmax . (33)

Inputs ur and T1–T4, are held constant at zero.
(2) Four-wheel steering In addition to the front steering angle, the rear steering angle, ur ,

is included in the control vector as

u = [uf ur]T, −ufmax ≤ uf ≤ ufmax , −urmax ≤ ur ≤ urmax . (34)

The braking torques on each wheel are assumed to be zero.
(3) Direct yaw moment control In addition to the front steering angle, braking torques on

each wheel are included in the control input. A differential-braking torque gives an alternative
means to control the yaw moment. For a given longitudinal acceleration limit, a, the required
total braking force is calculated as ma. To generate this total force, torques on each wheel are
determined by following equations:

T1 = Rmadfrdf , 0 ≤ a ≤ amax,

T2 = Rmadfr(1 − df ), 0 ≤ dfr ≤ 1,

T3 = Rma(1 − dfr)dr , 0 ≤ df ≤ 1,

T4 = Rma(1 − dfr)(1 − dr), 0 ≤ dr ≤ 1,

(35)

where R is an effective tyre radius, dfr is a front-to-rear torque distribution ratio, and df and
dr are the right to left torque distribution ratios for the front and rear wheels, respectively.
Therefore, u for this case is

u = [uf a dfr df dr]T. (36)

The rear steering angle is fixed at zero.

5. Computational conditions

According to the theoretical definition of the controllability region, the size of the region is
dependent on the time taken to transfer the state from the set of initial conditions to the target
set X . From a practical viewpoint, a long transition time is undesirable. Thus, the following
constraint for terminal time, τ , is considered:

τ ≤ 1 s. (37)

With the number of subintervals for the time discretisation in Equation (7) set at 10, the optimal
control inputs are calculated every 0.1 s.

Among the vehicle states described in Equation (1), the vehicle lateral/directional motion
and stability are best described through the lateral velocity, v, and yaw rate, r. Therefore,
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the v–r cross section is selected for calculation of the controllability region. Other than these
two parameters, the initial conditions are assumed to be the same as those when running in a
straight line. The total velocity, V , at t0 is assumed to be 30 m/s.

The target set, X (v, r), of the controllability region is set as:

v(τ ) = 0, r(τ ) = 0, (38)

and the additional terminal constraint in Equation (6) is

v̇(τ ) = 0, ṙ(τ ) = 0. (39)

This target set and terminal constraint are chosen such that the vehicle returns to straight-line
running.

6. Results of the controllability region computation

6.1. Front wheel steering

Figure 4 shows the controllability region of a 2WS vehicle when the limit of the front steering
command ufmax = 5◦. As indicated in this figure, the controllability region spreads towards
the first and third quadrants of the v–r cross section. For the readers’ interest, a number of
trajectories starting from the ∂C boundary are superimposed onto this figure. The optimal
front steering angle ensures convergence of all trajectories towards the target set X . Note
that the paths of certain trajectories cross the plane, since the plane is a cross section of the
multidimensional phase space.

Figure 5 illustrates three examples of the optimal front steering angle, lateral velocity,
and yaw rate at the points marked in Figure 4. The optimal controls satisfy the constraints
for upper and lower boundaries. From Figure 4, discontinuities in the controllability region
boundary exist in the first and third quadrants. For trajectories originating at either side of
these discontinuity points, changes are observed in the pattern of the optimal control as shown
in Figure 5.
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6.2. 2WS, effect of maximum steer angle

Figure 6 shows the effect of maximum front steering angle on the size of the controllability
region. As expected, a large front steering angle results in a larger controllability region. This
expansion effect is particularly apparent in the first and the third quadrants compared with the
second and fourth quadrants.

6.3. 2WS, effect of transition time

Figure 7 illustrates the effect of varying the transition time, τ . The controllability regions for
three different transition times are computed and compared, and a short transition time results
in smaller controllability region.
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6.4. Four-wheel steering

The result of adding rear wheel steering to the vehicle on the size of the controllability region
is shown in Figure 8. As seen in Figure 6 for the 2WS case, a large rear steering angle
expands the controllability region, especially in the first and third quadrants. In the second
and fourth quadrants, an increase in limit of the rear steering angle has no effect on the size of
the controllability region. Because the lateral forces of rear tyres are saturated in second and
fourth quadrants, additional rear steering does not enlarge the controllability region in these
quadrants.

6.5. Direct yaw moment control

The effect of DYC, specifically, the effect of differential braking, on the size of the control-
lability region is shown in Figure 9. In contrast to the 4WS case, a large torque increases
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the controllability region not only in the first and third quadrants, but also in the second and
fourth quadrants. Therefore, if the vehicle states v and r are perturbed to either the second or
fourth quadrant, DYC has the ability to return the vehicle to the original straight-line running
condition. This result shows the advantage of the DYC control method over 4WS. We con-
clude that no amount of design will enable the 4WS controller to exceed the performance of
the DYC.

7. Conclusion

This paper has presented an evaluation of chassis control methods by computing the con-
trollability region of each method. An optimisation-based method was proposed for this
computation. As a result, the controllability regions of three control methods were calculated
by the proposed method: conventional 2WS, 4WS, and DYC. The effects of the maximum
steering angle and the transition time on the size of the controllability region were examined.
From a comparison of the calculated controllability regions, the advantage of using DYC
above 4WS as a vehicle control method was demonstrated.
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