
1 INTRODUCTION 
In dynamics of railway vehicles, hunting motion has been to researched by many research-

ers for a long time[1], [2]. By using these results, parameters of a vehicle bogie are designed based 
on the linearized equations of motion. However, a critical speed obtained from the linearized 
equations of motion of a railway vehicle is a difference from an actual critical speed. On the 
other hand, railway vehicle dynamics with nonlinearity has been researched. In these research-
es, there is a topic about a bifurcation phenomenon of a hunting motion of a railway vehicle[3]-

[10]. In a hunting motion of a railway vehicle, a Hopf bifurcation occurs in a vehicle. There are 
two types in the Hopf bifurcation. One is a sub critical Hopf bifurcation. Another is a super crit-
ical Hopf bifurcation. When design parameters for a bogie is changed, a hunting motion 
changed between a sub critical Hopf bifurcation and a super critical Hopf bifurcation. In a case 
of a sub critical Hopf bifurcation, there is a possibility to start a hunting motion by a disturb-
ance under a critical speed. From this point of view, it is desirable to use design parameters that 
cause a super-critical Hopf bifurcation rather than design parameters that cause a sub-critical 
Hopf bifurcation. 

In this paper, characteristics of Hopf bifurcation are considered by adjusting a design pa-
rameter of a bogie. First, equations of motion including nonlinear terms for a bogie with a sin-
gle wheelset were used. These equations of motion were reduced using the centre manifold the-
ory. Next, differential equations of a normal form for the bifurcation phenomena were derived 
using a nonlinear coordinate transformation. The basic consideration for the design parameters 
for a bogie with a single wheelset were carried out from the amplitude and the bifurcation types 
of the limit cycle. 
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ABSTRACT: This paper deals with a nonlinear hunting motion of a railway wheelset. A hunt-
ing motion has characteristics of Hopf bifurcation. Hopf bifurcation is classified with sub criti-
cal Hopf bifurcation and super critical Hopf bifurcation. In case a sub critical Hopf bifurcation, 
an amplitude of a limit cycle of a hunting motion exists under a critical speed of a railway vehi-
cle. Therefore, if a railway vehicle has bogie parameters of a sub critical Hopf bifurcation char-
acteristics, a hunting motion of the vehicle might occur by some disturbance under a critical 
speed. In this paper, the characteristics of a sub critical Hopf bifurcation of hunting motion is 
considered. Using center manifold theory, equations of motion are reduced to differential equa-
tions of normal form. Moreover, an amplitude of a limit cycle is considered from the differen-
tial equations of normal form. 



 
(a) Sub critical Hopf bifurcation 

 
(b) Super critical Hopf bifurcation 

Figure 1 Hopf bifurcation 

 

 
Figure 2 Occurrence of a hunting motion due to disturbances under a critical speed 

 
 
2 VEHICLE MODEL 

A vehicle model is shown in Figure 1. In this paper, a single axle truck model is used for a 
following analysis. In this figure, v  denotes a vehicle speed, 0r  denotes a radius of a wheel, 
a  denotes a half of a track, L  denotes a half of a distance of axle boxes,   denotes a conic-
ity, xk  denotes a spring stiffness in a longitudinal direction and yk  denotes a spring stiffness 
in a lateral direction. 
 

 
Figure 3    Vehicle model 

 
 



Equations of motion of this model are described as follows: 
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Here, m  denotes a mass of the wheelset, I  denotes a moment of inertia of the wheelset, 

yyy ,  yy ,  y ,  , yyy ,  yy ,  y  and   are coefficients for nonlinear 
terms. 

 
3 NONLINEAR ANALYSIS OF A HUNTING MOTION 

These equations of motion were reduced to the normal form using the center manifold theo-
ry. The reduced equations of motion using polar coordinates are described as follows: 
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Here, r  denotes an amplitude,   denotes a phase,   denotes a speed variance from a 
critical speed. From these equations, an amplitude of the hunting motion is derived as follow-
ing: 
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4 RESULTS 

In the case a design parameter was changed, amplitude of the hunting motion was considered. 

When the amplitude of the hunting motion fr  is the real number, the amplitude of the hunting 

motion exists. Therefore, if 012101101 rr   is given, fr  become the real number in 0  

condition. This is a sub critical Hopf bifurcation. On the other hand, if 012101101 rr   is 

given, fr  become the real number in 0  condition. This is a super critical Hopf bifurca-

tion. When a primary spring stiffness is changed from 
6101  to 

9101 N/m, the amplitude of 

the hunting motion is shown in Figure2. From this result, the amplitude of the hunting motion 

occurs only under 0  condition. Therefore, a sub critical Hopf bifurcation occurs in any 

primary spring stiffness conditions. 

 
 
5 CONCLUSIONS 

In this paper, in order to change the characteristics of a Hopf bifurcation from the sub-
critical Hopf bifurcation to the super-critical Hopf bifurcation, characteristics of Hopf bifurca-
tion were considered by adjusting a design parameter of a bogie. First, equations of motion in-
cluding nonlinear terms for a bogie with a single wheelset were used. These equations of mo-
tion were reduced using the centre manifold theory. Next, differential equations of a normal 
form for the bifurcation phenomena were derived using a nonlinear coordinate transformation. 
The basic consideration for the design parameters for a bogie with a single wheelset were car-
ried out from the amplitude and the bifurcation types of the limit cycle. 
 



 
Figure 4    Relationship in velocity, spring stiffness and hunting amplitude 
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